
GMI Components: Import/Export Variables

Jules Kouatchou

May 31, 2006

Issues Raised at the Meeting

- Include the dimensions of variables

Done

- Include the units of vraiables

Done whenever available

- GMAO will provide "press3e" (atmospheric pressure at the edge

of each grid box) only and not "press3c", "ai", "bi", "am",

"bm" and "pt". These quantities will have to be derived by GMI.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

WE CAN AND WILL PROVIDE PRESS3C. YOU SHOULD ASSUME THIS.

}

Though "ai", "bi", "am", "bm" and "pt" may be read in from a

MetFields file, there is a GMI routine that sets their values

(that remain constant throughout the code). We can then easily

derive "press3c". As a matter of fact, we do not even need

"press3e". We only need the surface pressure.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

WE ARE TRYING TO AVOID THIS, IF POSSIBLE. THIS IS A TOPICS OF

SOME CONTENTION EVEN IN THE GMAO. THE POINT IS THAT BY READING

(OR DEFINING) AI, BI, ETC. GMI IS ASSUMING A VERTICAL COORDINATE

THAT MAY NOT BE CONSISTENT WITH THE GCM’S. AT PRESENT IT IS

CONSISTENT, BUT IF WE CAN AVOID THIS ASSUMPTION, WE MAY AVOID

PROBLEMS IN THE FUTURE.

THE PROPOSED SOLUTION IS NOT TO REDEFINE AI, ETC OR GET THEM FROM

A MET FILE, BUT TO GO WHEREVER THEY ARE USED AND REPLACE

THEM. WITHIN THE GMI CODE, THE AI AND BI SHOULD BE USED ONLY TO

1



2

COMPUTE THE PRESS3E, WHILE THE AM AND BM ONLY TO COMPUTE THE

PRESS3C. INSTEAD OF DOING THESE COMPUTATIONS JUST REPLACE THE

RESULT WITHTHE APPROPRIATE PRESS3{EC}.

I ASSUME THE SCALER PT WILL NO LONGER BE NEEDED ONCE THIS

REPLACEMENT IS MADE. IF IT IS, USE THE ARRAY PRESS3E(:,:,0)

INSTEAD. SAME FOR SURFACE PRESSURE---USE PRESS3E(:,:,LM).

}

- The array "cmi_flags" use for lightning parametrization could

be removed for now as IMPORT variable. It is resolution and

MetFields dependent.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

WE WILL SIMPLY PROVIDE CMI AND LWI AS THE SAME THING. CAN WE FIND OUT

WHAT THE DISTINCTION IS? LEAVE THEM AS IS FOR NOW

}

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

WE NEED TO LOOK AT THIS

}

- Do the variables "con_precip" and "tot_precip" include rainfall

or snow?

Do not know!

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

HOW DO WE FIND OUT?

}

- How are "max_cloud" and "ran_cloud" used?

Inside the Dry Deposition, Emission operators, they are used

to compute the fractional cloud cover (local variable):

cloud_frac(:,:) = 1.0d0 - &

((1.0d0 - Maxval (max_cloud(:,:,:), dim=3)) * &

(Product ((1.0d0 - ran_cloud(:,:,:)), dim=3)))

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

THIS IS THE TOTAL (2D) CLOUDINESS. IF THIS IS THE ONLY USE IN DRY

DEPOSITION, WE WILL GIVE YOU CLOUD_FRAC DIRECTLY. JUST MAKE IT AN



3

IMPORT AND HAVE EXTERNAL GMI CODE PROVIDE IT WITH THIS CALCULATION.

}

Inside Gas Phase Chemistry, they are used to derived "tau_cloud"

(DAO MetFields only).

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

IS TAU_CLOUD 2D OR 3D. CAN YOU SHOW ME THIS CALCULATION? WHAT DOES DAO

MET FIELDS ONLY MEAN?

}

Inside the photolysis package, they are use to compute the

fractional cloud cover.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

TOTAL? AS IN DRY DEP.?

}

Inside the AerosolDust module, they are used to compute the

optical depth of aerosol/dust species.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

DOES THE AEROSOL MODULE USE THESE OPTICAL DPETHS OR ARE THEY JUST

BEING COMPUTED FOR OUTPUT OR TO COMPUTE OTHER OUTPUT QUANTITIES. THIS

IS WHAT I SUSPECT AND IF SO WE DO NOT NEED THEM. WE WILL HOWEVER NEED

A WAY OF COMPUTING THEM IN THE GCM. THIS WILL REQIRE CONSIDERABLE

FURTHER DISCUSSION.

}

- Reduce the dimensions of the emission array, "emiss(:,:,:,:,:)"

and the species concentartion array, "const(:,:,:,:)".

A possible solution has been proposed by Tom.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

ARE WE PROCEEDING WITH THIS? CAN THE FINAL INTERFACE AFTER THE

SOLUTION IS IMPLEMENTED BE FULLY DESCRIBED IN THE NEXT ROUND OF EMAILS?

}

- Check the units of "mcor" and "mass" and they need to be IMPORT

variables.

"mcor" and "mass" can internally be derived in the GMI code.



4

The GMI unit for "mass" is [kg] but GMAO wants [kg/m2].

Do not know how to address the issue.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

THIS IS AEROSOL RELATED ONLY?? IF MCOR AND MASS ARE IN KG, AT SOME

POINT THE GMI CODE MUST WANT THE AREA OF THE GRID BOX AS INPUT. AT

THAT POINT WE CAN SEE HOW TO REPLACE THE UNITS. AGAIN THIS IS AN ITEM

FOR THE CODE WALKTHROUGH.

}

- Why are "emiss_isop", "emiss_monot" and "emiss_nox" considered

EXPORT variables for the Emission component?

The three variables are computed by the Emission component and

passed to the Chemistry component where they are used.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

ARE THEY COMPUTED OR SIMPLY READ FROMA FILE AND INTERPOLATED IN TIME

AND/OR SPACE? PHYSICAL COMPUTATIONS REMAIN HERE. IF IT IS ONLY

INTERPOLATION THEY CAN BE REMOVED COMPLETELY AND MADE IMPORTS OF

CHEMISTRY WHERE THEY WILL BE FILLED FROM THE FILES BY GEOS_GENERIC.

}

- Is it enough to provide "precipitation" only instead of the variables

"rain", "rain_zm", "rain_hk" and "rain_ls"?

They are mainly employed in the wet deposition package.

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

LETS WALK THROPUGH THIS. IT SHOULD BE EASY TO GIVE THESE A MORE

GENERIC INTERPRETATION THAN THE SHANG-MACFARLANE AND HACK DEFINITIONS.

}

- What are the arays "s_radius", "s_velocity" and "diffaer"?

The are updated by the module computing the gravitational settling

of aerosols and passed to the Dry Deposition operator. We may ignore

them for this work (till we have a coupled aerosol/combo mechanism).

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

YOU WOULD THINK WE NEED THIS. WHAT IS A COMBO?

}



5

- What is the array "tropp" and its unit?

There is a routine in GMI that computes its value using the temperature

and the atmospheric pressure (at the center of the grid box).

The unit of this variable is [mb].

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

I ASSUME THIS IS THE TROPOPAUSE PRESSURE AND IT SHOULD BECOME AN

IMPORT THAT WE PROVIDE. AGAIN EXTERNAL GMI CODE CAN DO THE

COMPUTATION AND PASS THE SAME IMPORT.

}

- How are the files read by the Emission and Chemistry components?

Most of the files are read by each worker processor.

A couple of them are read by the master processor (see below).

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

LET’S DO A WALKTHROUGH ON THESE READS AND THE FILE FORMATS

}

We list here the varaibles GMI will need from GEOS5 and the ones GMI will pass to GEOS5.
I WILL MARK UP ON THIS TABLE THINGS THAT STAY AS IS (!), THINGS THAT ARE IN QUES-
TION (?) AND THINGS THAT I THINK SHOULD GO (X)

========================================================================

EMISSION Component

========================================================================

IMPORT Variables

----------------

! press3c (:,:,:) Atmospheric pressure at the center of each grid box [mb ]

! press3e (:,:,:) Atmospheric pressure at the edge of each grid box [mb ]

? zmmu (:,:,:) Z-M convective mass flux in updraft [Pa/s ]

! cmi_flags (:,:) Array of flags that indicate continental, marine, or ice

Only used for lightning parameterization.

! lwi_flags (:,:) Array of flags that indicate land, water, or ice

? dtrn (:,:,:) Detrainment rate [DAO:kg/m^2*s]

[NCAR:s^-1]

! radswg (:,:) Net downward shortwave radiation at ground [W/m^2 ]

! surf_air_temp(:,:) Surface air temperature [degK ]

! surf_rough (:,:) Surface roughness [m ]



6

? con_precip (:,:) Convective precipitation [mm/day]

? tot_precip (:,:) Total precipitation [mm/day]

! ustar (:,:) friction velocity [m/s ]

? max_cloud (:,:,:) Maximum overlap cloud fraction for LW

? ran_cloud (:,:,:) Random overlap cloud fraction for LW

! kel (:,:,:) Temperature [degK ]

! pbl (:,:) Boundary layer height [m ]

! humidity (:,:,:) Specific humidity [g/kg ]

? pctm1 (:,:) Surface pressure at t1 [mb ]

? emiss (:,:,:,:,:) Array of emissions [kg/s ]

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

CONST SHOULD BE INTERNAL AND EXPORT AND ARRAY OF 3D POINTERS

}

x const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

x pt pressure = (am * pt) + (bm * psx) [mb ]

x ai (:) Pressure = (ai * pt) + (bi * psx), ai at zone interface

x bi (:) Pressure = (ai * pt) + (bi * psx), bi at zone interface

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

HOW ARE LAT-LON USED? WE SHOULD REPLACE THEM

}

X latdeg (:) Latitude [deg ]

X londeg (:) Longitude [deg ]

? mcor (:,:) Area of grid box [m^2 ]

? mass (:,:,:) Total mass of the atmosphere within each grid box [kg ]

EXPORT Variables

----------------

! flashrate (:,:) Flash rate (flashes per 4x5 box per s)

! lightning_no (:,:,:) 3d array of pnox production in kg./sec

? emiss_isop (:,:) Isoprene emissions [kg/s ]

? emiss_monot (:,:) Monoterpene emissions [kg/s ]

? emiss_nox (:,:) NOx emissions [kg/s ]

? emiss (:,:,:,:,:) Array of emissions [kg/s ]

? const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

========================================================================

WET DEPOSITION Component

========================================================================

IMPORT Variables

----------------

! press3c (:,:,:) Atmospheric pressure at the center of each grid box [mb ]

! press3e (:,:,:) Atmospheric pressure at the edge of each grid box [mb ]

! kel (:,:,:) Temperature [degK ]



7

? rain (:,:,:) rainfall across cell edges [mm/day]

? rain_zm (:,:,:) rain production due to deep conv processes [kg/kg/sec]

? rain_hk (:,:,:) rain production due to shal conv processes [kg/kg/sec]

? rain_ls (:,:,:) rain production due to lasrge-scale processes [kg/kg/sec]

? coscen (:) cosine of latitude of zone centers = cos(dlatr)

! grid_height (:,:,:) height of each grid box [m ]

! mass (:,:,:) total mass of the atmosphere within each grid box [kg ]

! wet_depos (:,:,:) wet deposition accumulated since last output [kg/m^2]

? mcor (:,:) Area of grid box [m^2 ]

? con_precip (:,:) Convective precipitation [mm/day]

? tot_precip (:,:) Total precipitation [mm/day]

? const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

EXPORT Variables

----------------

! wet_depos (:,:,:) wet deposition accumulated since last output [kg/m^2]

! const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

? moistq (:,:,:) moisture changes due to wet processes [g/kg/day]

========================================================================

DRY DEPOSITION Component

========================================================================

IMPORT Variables

----------------

X pt pressure = (am * pt) + (bm * psx) [mb ]

X ai (:) Pressure = (ai * pt) + (bi * psx), ai at zone interface

X bi (:) Pressure = (ai * pt) + (bi * psx), bi at zone interface

X am (:) pressure = (am * pt) + (bm * psf), am at zone midpoint

X bm (:) pressure = (am * pt) + (bm * psf), bm at zone midpoint

X latdeg (:) Latitude [deg ]

X londeg (:) Longitude [deg ]

X mcor (:,:) Area of grid box [m^2 ]

X mass (:,:,:) Total mass of the atmosphere within each grid box [kg ]

! lwi_flags (:,:) array of flags that indicate land, water, or ice

! himudity (:,:,:) specific humidity [g/kg ]

X max_cloud (:,:,:) Maximum overlap cloud fraction for LW

X ran_cloud (:,:,:) random overlap cloud fraction for LW

! radswg (:,:) net downward shortwave radiation at ground [W/m^2 ]

! surf_air_temp(:,:) surface air temperature [degK ]

! surf_rough (:,:) surface roughness [m ]

! ustar (:,:) friction velocity [m/s ]

! psf (:,:) surface pressure field at t1, known at zone centers [mb ]

! kel (:,:,:) temperature [degK ]

? s_radius (:,:,:) aerosol radius at bottom layer [m ]

? s_velocity (:,:,:) aerosol settling velocity at bottom layer [m/s ]

? diffaer (:,:,:) aerosol diffusivity at bottom layer [m^2/s ]

? dry_depos (:,:,:) dry deposition accumulated since last output [kg/m^2]

X const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

EXPORT Variables

----------------



8

! dry_depos (:,:,:) dry deposition accumulated since last output [kg/m^2]

! const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

========================================================================

SIMPLE DEPOSITION Component

========================================================================

IMPORT Variables

----------------

! press3c (:,:,:) atmospheric pressure at the center of each grid box [mb ]

X const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

EXPORT Variables

----------------

! const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

========================================================================

CHEMISTRY Component

========================================================================

IMPORT Variables

----------------

X pt pressure = (am * pt) + (bm * psx) [mb ]

X ai (:) Pressure = (ai * pt) + (bi * psx), ai at zone interface

X bi (:) Pressure = (ai * pt) + (bi * psx), bi at zone interface

X am (:) pressure = (am * pt) + (bm * psf), am at zone midpoint

X bm (:) pressure = (am * pt) + (bm * psf), bm at zone midpoint

X latdeg (:) Latitude [deg ]

X londeg (:) Longitude [deg ]

X dlatr (:) latitude of zone center in latitude direction [rad ]

X mcor (:,:) Area of grid box [m^2 ]

X mass (:,:,:) Total mass of the atmosphere within each grid box [kg ]

! grid_height height of each grid box [m ]

!

! press3c (:,:,:) Atmospheric pressure at the center of each grid box [mb ]

! press3e (:,:,:) Atmospheric pressure at the edge of each grid box [mb ]

! tropp (:,:) tropopause pressure [mb ]

? max_cloud (:,:,:) Maximum overlap cloud fraction for LW

? ran_cloud (:,:,:) Random overlap cloud fraction for LW

? tau_cloud (:,:,:) optical depth (dimensionless)

! kel (:,:,:) Temperature [degK ]

! humidity (:,:,:) Specific humidity [g/kg ]

? pctm2 (:,:) Surface pressure at t1+tdt [mb ]

? surf_alb_uv (:,:) bulk surface albedo (fraction 0-1)

! cmf (:,:,:) convective mass flux [kg/m^2*s]

! emiss_isop (:,:) Isoprene emissions [kg/s ]

! emiss_monot (:,:) Monoterpene emissions [kg/s ]

! emiss_nox (:,:) NOx emissions [kg/s ]

! emiss (:,:,:,:,:) Array of emissions [kg/s ]

X const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]



9

EXPORT Variables

----------------

! const (:,:,:,:) Species concentration, known at zone centers [mixing ratio]

? emiss (:,:,:,:,:) Array of emissions [kg/s ]

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

{\it

WE WILL NEED TO KNOW ALL OF THESE FORMATS AND DISCUSS A SANE

CONSISTENT FORMAT (HDF) FOR ALL OF THEM.

}

========================================================================

INPUT FILES NAMES

========================================================================

Emission

emiss_infile_name : emission input file name (netCDF)

read by all the worker processors

light_infile_name : lightning input file name (ascii)

read by all the worker processors

precip_infile_name : precipitation input file name (ascii)

read by all the worker processors

soil_infile_name : soil type input file name (ascii)

read by all the worker processors

isopconv_infile_name : isoprene convert input file name (ascii)

read by all the worker processors

monotconv_infile_name : monoterpene convert input file name (ascii)

read by all the worker processors

veg_infile_name : vegetation type input file name (ascii)

read by all the worker processors

lai_infile_name : leaf area index input file name (ascii)

read by all the worker processors

gcr_infile_name : Galactic Cosmic Ray input file name (netCDF)

read by all the worker processors

fertscal_infile_name : fertilizer scale input file name (ascii)

read by all the worker processors

Chemistry

forc_bc_infile_name : forcing bc input file name (ascii)

read by master processor

h2oclim_infile_name : water climatology input file name (netCDF)

read by all the worker processors

lbssad_infile_name : liq bin sul sad input file name (netCDF)

read by all the worker processors

uvalbedo_infile_name : uv albedo input file name (ascii)

read by master processor



10

cross_section_file : X-Section quantum yield input file name (ascii)

read by all the worker processors

rate_file : Master rate input file name (ascii)

read by all the worker processors

T_O3_climatology_file : T & O3 climatology input file name (ascii)

read by all the worker processors

========================================================================

s_radius, s_velocity and diffaer

========================================================================

s_radius, s_velocity and diffaer are updated inside the routine

computing the gravitational settling of aerosols, Update_Grav_Settling.

Update_Grav_Settling is called only if the logical variable "do_grav_set"

is set to true.

How some Variables are Used in the GMI Code

========================================================================

mcor, pt, ai, bi, am, bm

========================================================================

==================

EMISSION Component

==================

"mcor" is employed to

- update the array "emiss_nox" (unit issue?)

- update diagnostics variables

"humidity, ai, bi, pt" are only used to compute the grid box height

inside Add_Emiss_Llnl. They can be removed from the argument list of

the emission control routine and be replaced by "grid_height".

===================

CHEMISTRY Component

===================

"mcor" is utilized

- to calculate column ozone in the lookup table module (unit issue?)

- for surface emission diagnostics.

"mcor, ai, bi" are used to calculate conversion to go from kg/box/s to

mole/cm^3/s.

"humidity, ai, bi, pt" are only used to compute the grid box height

inside Update_Semiss_Inchem. They can be removed from the argument list of

this routine and be replaced by "grid_height".

The same can be said for the argument list of

- Update_QuadChem

- Update_Smv2chem

"ai, bi, pt" are employed to compute tau_cloud for DAO Met Fields.

"ai, bi, am, bm, pt" are used in the photolysis package to calculate

pressure at boundaries of CTM levels:



11

Press(:) = ai(:)*pt + bi(:)*SurfPressure

Press(:) = am(:)*pt + bm(:)*SurfPressure

====================

DEPOSITION Component

====================

"mcor" is utilized to

- update dry_depos and wet_depos (unit issue?)

- update moistq and precip_bot (unit issue?)

"humidity, ai, bi, pt" are only used to compute the grid box height

inside Update_Drydep. They can be removed from the argument list of

this routine and be replaced by "grid_height".

"humidity, am, bm, pt" are also used there to compute something

similar to the grid box height.

====================

CONVECTION Component

====================

"mcor" is utilized to

- compute the internal number of time step for convection

- update the wet_depos array (unit issue?)

"ai, bi, pt" only employed in Do_Convec_Dao2.

====================

ADVECTION Component

====================

"mcor, ai, bi, pt" are used the total mass for internal diagnostics.

The variable "mass" can passed in the argument list of the advection

control routine and replace them.

From 4D variables to 3D variables

! Module implements a derived type to support an "array of arrays" in F90.

! The derived type is not opaque - a compromise to minimize the impact on

! legacy code that uses the original data structure (a 4D array).

module GMI_Bundle_mod

implicit none

private

public :: GMI_Bundle_type ! derived type

public :: GMI_Bundle ! constructor

public :: clean ! destructor

public :: setPointer ! accessor

public :: getPointer ! accessor

! Derived type has public components for ease of use.

! Strong encapsulation would require intrusive changes

! in bothe GEOS and GMI.

type GMI_Bundle_type

real (kind=r64) :: pArray3D(:,:,:) => null()

end type GMI_Bundle_type



12

interface clean

module procedure cleanScalar

module procedure cleanVector

end interface

contains

! Initialize a bundle from an already allocated 4D array.

function GMI_Bundle(concentrations) result (bundle)

real (kind=r64), target :: concentrations(:,:,:,:) ! I,J,K,species

type (GMI_Bundle_type), pointer :: bundle(:)

integer :: i

integer :: numSpecies

numSpecies = size(concentrations, 4)

allocate(bundle(numSpecies))

do i = 1, numSpecies

call setPointer(bundle(i), concentrations(:,:,:,i))

end do

end function GMI_Bundle

! Establish a link to a specified 3D target

! (pretend that encapsulation is enforced)

subroutine setPointer(this, newTarget)

type (GMI_Bundle_type) :: this

real (kind=r64), target :: newTarget(:,:,:)

! The following could fail on some compilers if a temporary copy of

! concentrations is generated. Unlikely in this context, though.

this%pArray3D => newTarget

end subroutine setPointer

! Retrieve pointer (pretend that encapsulation is enforced)

function getPointer(this) result(ptr)

type (GMI_Bundle_type) :: this

real (kind=r64), pointer :: ptr

ptr => this%pArray3D

end function getPointer

! Nullify the internal pointer (pretend encapsulation is enforced)

subroutine cleanScalar(this)

type (GMI_Bundle_type) :: this

nullify(this%pArray3D)

end subroutine cleanScalar

! Clean an array of derived types. First clean each element, and

! then deallocate the array.

subroutine cleanVector(this)

type (GMI_Bundle_type), pointer :: this(:)

integer :: i



13

do i = 1, size(this)

call clean(this(i))

end do

deallocate(this)

end subroutine cleanVector

end module GMI_bundle_mod


